ExposésA remark on special values of Gaussian hypergeometric functionsXavier CarusoRésumé :In this talk, I will share some recent observations about the special value at $1$ of the Gaussian hypergeometric function ${}_2 F_1 (a, b; c; z)$ when the parameters $a$, $b$ and $c$ are rational numbers subject to the condition $a + b - 2c \in \mathbb Z$.
A Linear Independence of the Multiple Zeta Values in Positive CharacteristicsHojin KimRésumé :The Zagier-Hoffman’s conjectures describe the dimension and a basis set for the $\mathbb{Q}$-vector space spanned by classical Multiple Zeta Values (MZV's). The function field analogy allows us to define the MZV's in positive characteristics, and the Zagier-Hoffman’s conjectures have been established for the MZV's in positive characteristics over the function field $\mathbb{F}_q(\theta)$ by Im, Le, Ngo Dac, Pham and the speaker (see also the work of Chang, Chen, and Mishiba). Building on this result, this talk presents ongoing research on the linear independence of the MZVs in positive characteristics over $\mathbb{F}_q$. This is joint work with Bo-Hae Im and Tuan Ngo Dac.
A P-adic class formula for Drinfeld modulesAlexis LucasRésumé :In this talk, for $L/\F_q(t)$ a finite extension with ring of integer denotes by $\mathscr{O}_L$, I will introduce the $P$-adic $L$-series associated with Drinfeld $\F_q[t]$-modules defined over $\mathscr{O}_L$. I will then explain a P-adic class formula à la Taelman, linking the $P$-adic $L$-series to a certain $P$-adic regulator and the Taelman class module. I will then give necessary and sufficient conditions for the vanishing of this series under certain conjectures. Finally, if time permits, we will consider the vanishing order at $z=1$ of the $P$-adic $L$-series in the case $L=K$.
The refined class number formula for Drinfeld modulesDaniel Macias CastilloRésumé :In 2012, Taelman proved an analogue of the Analytic Class Number Formula, for the Goss $L$-values that are associated to Drinfeld modules. He also explicitly stated that `it should be possible to formulate and prove an equivariant version' of this formula.
Determining t-motives and dual t-motivesAndreas MaurischatRésumé :In this talk, we present an algorithm to compute Anderson t-motives and dual t-motives attached to abelian Anderson t-modules. Reversely, for a given object in the category of (dual) t-motives, we show how to decide whether it is the (dual) t-motive associated to a t-module, and determine that t-module.
Exemples de formes automorphes en caractéristique positiveHassan OukhabaRésumé :L'idée est d'expliquer le cheminement qui permet de passer de l'espace des fonctions analytiques rigides sur une courbe de Mumford, obtenue à partir d'une algèbre de quaternion sur une corps de fonctions, aux formes automorphes associées au groupe des inversibles de l'algèbre en question.
Functional identities for zeta functions over curvesFederico PellarinRésumé :Riemann’s zeta function, a complex valued function, interpolates zeta values at integers greater than two and thanks to its functional equation, we can deduce Euler’s famous identities, first discovered in 1735.
In the years 1980 Goss introduced zeta and L-values interpolating certain zeta values introduced by Carlitz in 1935 that are elements of complete algebraically closed fields of positive characteristic. A functional equation for these functions is not known.
Perrin-Riou's main conjecture for modular formsMaria Rosaria PatiRésumé :In this talk, I will state and sketch a proof of the counterpart for a higher (even) weight newform f of Perrin-Riou’s Heegner point main conjecture for elliptic curves ("Heegner cycle main conjecture" for f). Our strategy of proof builds on ideas of Bertolini and Darmon, as elaborated by Howard, and consists in the construction of a so-called bipartite Euler system, that is a collection of cohomology classes and p-adic L-functions attached to congruent modular forms. This is joint work with Matteo Longo and Stefano Vigni.
Algebraic independence of E and G-functionsDaniel Vargas MontoyaRésumé :The E and G-functions are series introduced by Siegel in 1929 with the aim of generalizing the Lindemann–Weierstrass and
Aspects p-adiques des formes de MaassJan VonkRésumé :Suivant une suggestion de Blasius et Calegari, on explore quelques analogies entre les formes d'onde de Maass et les formes propres surconvergentes (p-adiques), en nous concentrant sur leurs ensembles de zéros. Ce travail est une collaboration avec Paolo Bordignon. |